Conquer the College Math Placement Challenge 2025 – Step Up and Shine!

Question: 1 / 400

If sin(θ) = 0.5, what is the angle θ in degrees?

15 degrees

30 degrees

To determine the angle \( \theta \) when \( \sin(\theta) = 0.5 \), we can refer to the unit circle and the values of sine for commonly known angles.

The sine function, \( \sin(\theta) \), represents the ratio of the opposite side to the hypotenuse in a right triangle. From the unit circle, we learn that \( \sin(30^\circ) \) is equal to \( 0.5 \). Therefore, when \( \sin(\theta) = 0.5 \), one valid solution for \( \theta \) is indeed \( 30^\circ \).

Additionally, the sine function is positive in the first and second quadrants. Thus, beyond \( 30^\circ \), there is also an angle in the second quadrant where \( \sin(180^\circ - 30^\circ) = 0.5\), which gives us \( 150^\circ \) as another solution. However, if we are only focusing on angles from \( 0^\circ \) to \( 180^\circ \) for typical placements in such problems, the immediate and simplest answer remains \( 30^\circ \).

Hence, the value of

Get further explanation with Examzify DeepDiveBeta

45 degrees

60 degrees

Next Question

Report this question

Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy